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Experimental observations of ignition in premixed gaseous
reactants indicate that perfectly homogeneous initiation is
practically unrealizable. Instead, combustion first sets in, as a
rule, at small, discrete sites where inherent inhomogeneities cause
chemical activity to proceed preferentially and lead to localized
explosions. Combustion waves propagating away from these "hot
spots" or "reaction centers" eventually envelope the remaining
bulk.

This study examines the spatial structure and temporal evolution
of a hot spot for a model involving Arrhenius kinetics. The hot
spot, characterized by peaks in pressure and temperature with
little diminution in local density, is shown to have one of two
possible self-similar structures. The analysis employs a
combination of asymptotics and numerics, and terminates when
pressure and temperature in the explosion have peaked.
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1. Introduction

This paper descibes mathematically the birth and growth of a hot

spot, or localized thermal explosion, in a premixed reactive gas.

Experimental observations on the initiation of combustion in

gases at high temperatures, in shock tubes and elsewhere, have

demonstrated conclusively that spatially homogeneous combustion is

essentially an unattainable ideal. In fact, ignition first sets in

locally, in small volume elements at discrete sites, where chemical .l

reaction proceeds preferentially due to inherent imperfections in

the system. In due course, combustion waves originating from

localized explosions occuring at these "hot spots", "reaction

centers" or "exothermic centers" envelope the entire reacting mass.

The role played by these sites as precursors of more dramatic

combustion phenomena is revealed with unsurpassed clarity in Urtiew

and Oppenheim's [1] photographic records of deflagration-to-

detonation transition in a Hydrogen-Oxygen mixture confined to a K

tube. These photographs show that as the deflagration travels down

the tube, it accelerates and evolves into a highly folded turbulent
9...'

flame, preceded by a so-called precursor shock. Eventually, an

exothermic center is formed in the vicinity of the flame, near the

tube wall. The localized explosion in this center creates a blast

wave which propagates through the preconditioned mixture behind the

precursor shock and ultimately evolves into a fully-developed

detonation. The same feature appears in other modes of detonation-

initiation, as well as in other geometric configurations.

The early analyses of reaction-center dynamics are due to Zajac

and Oppenheim [2) and Meyer and Oppenheim (3]. In these studies

-b. - .! r ' ' , . %
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the reaction center is assumed to be a spatially homogeneous source

of chemical energy, capable of expansion and separated from its

inert surroundings by an impermeable barrier, across which only

momentum transfer can occur. Either by prescribing a specific .

reaction scheme, or by specifying an energy release profile within

the center, the above authors were able to compute the resulting

pressure pulse.

In this paper the reaction center is treated as part and

parcel of the reacting medium rather than an isolated entity in an

inert atmosphere, and is found to have a definite spatial

structure. The aim of this paper is to describe this structure and

to study its temporal evolution in a plane, one-dimensional

framework, under the asssumption that the reactive gas undergoes a

single, one-step, first-order, irreversible chemical reaction of

the Arrhenius type. One may argue that the simple overall kinetic

scheme adopted here is too idealized to be realistic. However, for

large activation energies, the kinetics does capture an essential

attribute of most combustion systems, namely, a reaction rate which

accelerates rapidly with increase in temperature. Thus the model

is quite appropriate for studying problems, such as the one at

hand, which owe their genesis to the interaction between

gasdynamics and chemical heat release at highly temperature-

sensitive rates. *

The configuration of the system is so prescribed as to provoke

the development of a single hot spot, and this can be accomplished

in a variety of ways. For example, the shock-induced thermal- P

runaway studies of Clarke and Cant [43 and Jackson and Kapila (5)
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considered a semi-infinite expanse of gas ignited by a piston-

driven shock, thereby creating a hot spot at the piston face.

Instead, the present work assumes that the gas is confined between

two parallel planes, and that its initial state possesses a slight

spatial nonuniformity. (In a practical situation these non-

uniformities may be caused by a variety of factors, such as

turbulence, interacting pressure waves, or, in the case of %

condensed explosives, material imperfections.) The mathematical

model leads to an initial-boundary value problem for the equations

of reactive gasdynamics. An asymptotic solution is developed in

the limit of large activation energy, and the analysis is carried "

as far as the end of the localized explosion within the center.

The subsequent expansion of the center, and the eventual generation

of a blast wave, will be the subject of a future publication.

The temporal evolution of the explosion occurs in two stages,

beginning with the induction stage. Here the state of the gas is a

small perturbation of the initial state and the underlying physical

processes are those of linearized acoustics coupled to a weak but

nonlinear chemical reaction. The reduced equations require a

numerical solution (see [4] and [5]) which exhibits local thermal

runaway. Induction is followed by the explosion stage, which

consists of several distinct spatial zones. There is the

practically frozen outer zone, and a rapidly shrinking inner zone

or layer in which intense chemical activity leads to an explosive

growth of temperature and pressure. Nonlinear chemistry is again

coupled to linearized gasdynamics, but now the linearization is

about an atmosphere undergoing a spatially homogeneous thermal

,.S
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explosion. As the layer shrinks, it recedes away from the outer

zone, thereby creating an intermediate zone which 
is frozen in e

time. Although highly nonlinear, the explosion stage is amenable

to analysis because gasdynamics is of secondary importance; 0

temporal variations are much too rapid for the gas to undergo

significant expansion.

For the specific reaction scheme under consideration it is found

that the reaction center can have one of two posible spatial

structures, depending upon whether the temperature profile within

the hot spot has a sharp peak or a rounded peak (Figure 1). The

former typifies hot spots originating at boundaries (e.g., a piston

face), and the latter those occuring in the interior of the vessel.

These structures, which will be referred to as the "Type B"

(boundary-type) or "Type I" (internal type), are both self-similar.

The former is described below in detail, with only the results for

the latter given in section 6. In addition to these two structures

there exists a third, described briefly in the Appendix; it is

singular and corresponds to very special initial conditions.

The specific configuration under study here was also examined,

with similar methods, by Poland and Kassoy E63. Their analysis

differs from ours in one crucial respect; they considered the

distinguished limit in which the spatially homogeneous induction

time at the initial state and the conduction time across the vessel

are of the same order, i.e., the Frank-Kamanetskii number 8 is of

order unity, albeit supercritical. In our analysis the induction

time is comparable to the acoustic time across the vessel, i.e., I %

is very large. In physical terms, the explosive mixture being

**d~~*.dS~~J* J / . .
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considered here has a faster reaction rate.

2. The Basic Equations, and Setup

The equations of reactive gasdynamics for plane, one-dimensional, %'

unsteady motion are 17J 4

(2.1a Pt URXI Pu 0,ccesson Fo

(2. lb) P(ut + uux) + (1/Y)px 0, DTIC TAB
Unannounced i

(2.1c) O(Tt + uT) - (Y-1)/J'J(pt + upx) 13w Justification

(2. 1d) P(Y + uYx)= w By
Distribution/

(2.le p TAvailability Codes
Avail and/or-

Dist Special

where :% -

(2. if) wv =1/(j99)JPYexp(&-19/T). N

Here p, P, T, u and Y are, respectively, thu gas pressure, density,

temperature, Velocity and reactant mass fraction. The variables

have been made dimensionless with respect to a constant reference

state p0 , P0, To and Yo. Velocity is ref erred to the acoustic

speed co, defined by

Co EYpo/p 0J"2

time to to, the homogeneous induction time at the reference state,

%

and length to coto. The diffusion terms have been left out because

they are much too small to play a role in the problem under study.
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The dimensionless parameters appearing above are the specific-heats %,

ratio Y, the chemical heat release 0 and the activation energy 9. ,

Let the reacting gas be confined to the interval 0 < x < a. At

the walls the appropriate boundary conditions are

(2.2) u(O,t) = u(a,t) = 0.

..-..

The initial state of the gas is taken to be an O( -1) perturbation

of the spatially homogeneous and stationary reference state, i.e.,

"%'

(2.3a) u(x,O) = -1u 1 (XO),'

(2.3b) f(x,O) = 1 + - 1 (x,O) for I = T, p, Y and p,

where the precise specification of u l (x,O ) and fl(x,O) must await

the next section. Note that

(2.3c) Pl(x,O) = pl(x,O) - Tl(x,O) ,..- .

in accordance with the gas law (2.1e). An asymptotic solution of the

initial-boundary-value problem (2.1)-(2.3) is sought in the limitI • . . i

8 4 (, with 13 and Y fixed and 0(1), until the localized explosion

has reached completion. The various stages of evolution are

detailed in the following sections.

3. The Induction Stage

The initial conditions (2.3) suggest that, at least initially,

the state of the gas remains an 0(e -1) perturbation of the

, % .

.1',".,
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reference state. During this period, referred to as the induction V

stage, one therefore seeks the expansions

(3.1) U . 071U I + ... 1+ -ll +.

for =T, p, Y andp

which, upon substitution into the set (2.1) yield the leading-order

44%o

disturbance equations L

(3.2a) (3/3t + a/x)(pl - Yu) = Yexp(T 1 ),

(3.2b) 3/3t[YT1 - (Y-1)p 1j Yexp(T 1 ),

(3.2c) P1 = P1 - Ti, aY 1i/3t = -(1/13)exp(T 1 ).

Except for the nonlinear source term, eqns. (3.2a,b) are simply

those of linearized acoustics in a uniform atmosphere. It is a

simple matter to integrate them along the characteristics, as was

done in [4] and [53 for a different configuration. During

induction it is enough to concentrate on the variables T1 , p1 and

Ul, because once they are known, the first eqn. in (3.2c) yields P1

while the second, combined with (3.2b) and integrated, determines

Y 1 according to the expression

4 (3.2d) T1- (Y-1)IY]pl + OY 1  Tl(x,O) - [(Y-1)IY]pI(x,O)

+ 13Vl(x,O).

Equations (3.2) need to be solved numerically, and this was done

for

A' S. -
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Y = 1.4

and for a variety of smooth initial conditions and interval lengths

a. A high-resolution, adaptive ODE integrator was employed to

integrate along the characteristics. All computations displayed

thermal runaway, characterized by the unboundedness of T, and p,

somewhere in the interval [O,a] at a finite time t e . The numerical

results can all be summarized by considering two representative

cases, for which the initial values of pressure and mass fraction

correspond to those at the reference state and the initial velocity

is zero, i.e.,

(3.3a) Pl(X,O) Y 1 (x,0) ul(x,O) = 0,

while the initial temperature perturbations are prescribed as

(3.3b) TI(x,O) = bl-(x/a)] for case I, b[1-(x/a)2 ] for case II.

(Numerical results to be presented below correspond to a - 0.8, b =

0.5.) In both cases the initial disturbance has a single maximum .. -

at x 0, causing it to become the site of thermal runaway. The

essential difference between the two cases is that in I the

temperature disturbance has a nonzero spatial gradient (sharp peak) V.

and in II a zero spatial gradient (rounded peak), at x = 0. Thus I

typifies a hot spot located at the boundary (e.g., the shock '.

configuration discussed in [4] and [5]), and II an internal hot -'.

spot (easily visualized by a symmetric reflection about the

- - . . . . .,.- U . * .. . . . . . . . . . . .. +.
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origin). Henceforth the two cases will be referred to, ,..

respectively, as Type B (boundary) and Type I (internal). Their

spatial structures, it turns out, are different.

In the following sections the Type-B problem is discussed in

detail. The Type-I problem can be treated analogously and is, in

fact, slightly simpler to analyze; it was deemed sufficient, *_'4

therefore, to simply state its solution in section 6.

We -5tart with Figure 2, which displays the numerical results for

the Type-B induction solution. The four graphs there exhibit,

respectively, the profiles of T 1 , Pl' ul and P1 against x for ...

increasing values of t, upto the time beyond which the integration

routine was unsuccessful for a time step I0- 6, thus signalling the

imminence of blowup. An examination of the T I- profile near blowup

reveals the birth of a boundary layer at x 0. Additional

information is provided by Figure 3, where the function expE-

T l(O ,t) ] is graphed near blowup. The straight-line graph in the
•.% .4

figure has slope 1.4 (=Y), and a t-intercept equal to the blowup

time te, allowing one to conclude that

(3.4) Tl(O,t) . -ln[Y(te-t)J + o(1) as t * te .

Figure 4 displays time plots of the solution at x = 0, and shows

clearly that while Tl(O,t) and pl(O,t) become unbounded, P1 (Ot)

does not. Therefore, plO,t) must have precisely the same leading-

order behavior as T l (O t), i.e.,

(3.5) Pl(O,t) -in~te-tJ + 0(1) as t te.

."-. . . . ,.. . --.. " . , A,-..-.* . .. . , .. - - ,,. -, - - -, . . -I.L.
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To summarize, the induction stage exhibits the classic logarithmic

singularity of spatially homogeneous thermal runaway [8].

%-. - -

4. Type-B Blowup Structure

Although numerics has elucidated the temporal character of the

blowup singularity, further analysis is needed to ascertain its

spatial structure. This will be done by examining separately the

boundary layer, whose emergence has already been noted, and the

region outside. First, it is convenient to introduce a new time

variable r via the expression

(4.1) = te-t, r > 0.

Then, following simple manipulations, earas. (3.2a,b) transform into

(4.2a) ;)pl/ax - ¥3U/3i = 0,

(4.2b) Y3ul/3x - Opl/3r = (Y-1)Opl/3r - Y3T 1 /3r Yexp(T 1 ),

where the dependent variables are now treated as functions of x and

r. The relevant boundary condition is the first of (2.2), re-

written as
.'• '-

(4.3) u 1 (Or) = 0.

Elementary manipulations on (4.2a,b) and (4.3) yield the following

integral, which will prove to be of value later on:

11a%~u~
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(4.4) 3(r) = 0 exp exp(TllOt))dtl,

where 3(r) denotes the disturbance temperature gradient at x 0,

and 30 its initial value, i.e.,

(4.5) (r) = [ail(x,r)/ax]x=, 0 = 3(te-).

Recall, from (3.3b), that vanishes for type I but is negative

for type B. Then (4.4) shows that 3(r) 0 (rounded peak) for the

former and decreases monotonocally to -0 (sharp peak approaching a

cusp) for the latter as r 0+.

4.1 The Boundary Layer
%'

Turning now to the asymptotic analysis near blowup, eqns. (4.2a,b)

govern the region outside the boundary layer, where the outer limit

process

x > 0 and fixed, r 0

applies. The boundary layer, on the other hand, corresponds to the

inner limit process

s > 0 and fixed, r 4 0,

where s(x,r) is the spatial coordinate in the boundary layer,

reflecting its self-similar structure. The shrinking nature of the

layer requires x to vanish under the inner limiting process, and

1%

-* ~ - ~ .~ --Jo
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then a moment's reflection suggests the definition

(4.6) s X/=

which assigns coequal importance to the x- and r-derivatives,

thereby providing the richest equations for the inner limit. (it

will transpire that this scaling does not quite cover the entire ..

boundary layer, but more about that later.) These equations,

obtained by transforming (4.2a,b) to the (s,r) variables, are

(4.7a) (s3/3s - r3I3r)[YT 1  (Y-1)pj) = Yrexp(T1 ),

(4.7b) (sO/3s - rta/3r)pl + Y3u1 /3s =Yrexp(T1 ),

(4.7c) (s3/3s - r3/3r0u1 + (l/Y)3p 1 /a)s = 0.

It is convenient to isolate the temporal singularity from the

spatial structure, by setting

(4.9a) T1 = -In (YO) + f (s, 0),

(4.13b) p1 = -in (B 1 0 +g(s0,

(4.8c) u1 = sr)

where the yet unknown constant B1 represents a weak influence of

the initial conditions on the self-similar boundary layer, and will

be determined in due course by matching. The structure functions

f, g and h are assumed to be o(1) in the limit r + 0. Substitution

of (4.13) into (4.7) yields the structure equations

%'



(4. 9a) sS -rfr + (Y-1)h 5  e~ 1

(4. 9b) s (f s gs) - (f r- n ) -hs 0,%

(4. 9c) sh, rh r + (1/Y)g5 = 0.

The only boundary condition appropriate for the above set is the

wall condition

(4.10) h(0,r) = 0.

In addition, since the initial data are smooth, the structure

functions and their s-derivatives are required to be regular in s.

Consider the asymptotic expansions

(4.11) al"1s + a 2 (r)* 2 (s) + .. for I=4, g, and h,

as r + 0. The gauge sequence (oa (r)} is not yet specified, but a

clue as to its identity is provided by the integral relation (4.4),

rewritten as

(4.12) f (0, r) 30~ r exp[r-r (I/ (Ytlexp(f (0,t))dt]
te

in view of the scaling (4.6) and the prescription (4.8). For small

r the f-expansion in (4.11) allows the above relation to be reduced

further to the asymptotic form

(4.13) 71f 1 ' (0) +*.-

:30r 1) (f (0)/,Ylf t-a 1 (t) dt+. ,

0

4 where /
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(4.14) A = (Y-1)/¥. -
,....-,.

Recall, from (4.5), that the constant a0 is nonzero for the Type-B

problem. Then, the assumption that f 1'(O0 is nonvanishing

(involving no loss of generality) leads to the conclusion

(4.15) a (r) = r--

if the two sides of (4.13) are to balance at leading order. With

al determined, it can be shown that the expansions (4.11) proceed .

in powers of r .
"

The boundary-layer analysis can now be carried out, and as

hinted earlier, the layer is found to have a two-sublayer

structure. It is convenient to refer to Figure 5 in which the

various spatial regimes near and beyond blowup are displayed

schematically. OR refers to the outer region and BL to the

boundary layer; the latter is subdivided further into an interior

sublayer L, and an exterior sublayer LE. We shall first examine

the interior sublayer, show that it becomes nonuniform for large s,

determine the appropriate scaling and expansions for the exterior '.

sublayer, and demonstrate that the latter merges smoothly into the

outer region. Only one or two terms of the expansions in each

region will be computed; continuation to higher orders is

straightforward though increasingly complex algebraically.

4.1.1 The Intorior Bublayer L I

Substitution of (4.11) into (4.9) yields the leading-order

% %
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structure equations for the inner sublayer, %

(4.16a) sf 1 " - (\+l)f I + (Y-1)h I " = 0,

(4.16b) S(fl"-g 1 ') - A(f 1-gl) - h 1 = 0, '

(4.16c) sh I " - Ah I + (1/Y)g I = 0.

The boundary condition

(4.l6d) h I (0) = 0

comes from (4.10), and the solution is restricted additionally by the

requirement that it be regular. If g, and h I are eliminated from

(4.16a-c), the result is the third-order equation

(4.17) [(s3-s)fll" + X[(1-3s2 )f 1 J] - (s2 -1/Y)f

+ (A+1) (3A-4)sfI + (A2 -1) (2-X) 1  0

for f 1 " The points s=O and s=1 are singular points of this .

equation and the three linearly independent solutions have the

asymptotic behavior ,- y

1, s and sins as s 0 0, and

1, 1-s and 1 1-s 1 3(Y-1)/2
¥ as s * 1. .*

In general one can expect a one-parameter family of regular

solutions to exist, and numerical computations verify that such is

indeed the case. A convenient parameter is

%~~~. .- ...

% N" .%1 '. %

'A..-
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(4.163) Al f 1 (O).

With fl known, hl' can be eliminated from (4.16a,b) to obtain a

first-order differential equation for g, whose regular solution

turns out to be

(4.19a) 9 1 =s/\,Y13 ((Y+1/XI/(x)))f1
0

and then, (4.16c) integrates to give

(4 9) 1 =g 1 '/(YA) -Es/(YM)J x )g, (x)dx,

where regularity has been imposed again. Thus the full solution at

this order depends on the single parameter A,. Graphs of fl, g,

and h1 for A1  1 are drawn in Figure 6.

At this stage the solution (4.6) has the following expansions

in the interior sublayer:

(4.20a) T, -in(Yr) + r f1()+.l-

(4.20b) p 1  -in(B1 r) + rAg 1 s

(4.20c) u1I r~th (S) + *

In order to determine the spatial extent of Lone needs the

asymptotic behavior of fl, g, and h, for large s. This is easily

obtained from (4.17) and (4.19), as

(4. 21 a) f - -AlOtEs~ 2 1 ' + 6 1 1/ A.ins + B)
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+ Cfs - 1 ¥ + 1 ) / ¥ +..]

(4.21b) gl -Al[1s( 2 - 1 ')1/ + D s(Y-1)/y + S/Y(A Ins +B
gg g

+ C -(Y+l)/Y + .. -

(YI/ I Ahns +B +Ch s 1 ¥ -.-
(4.21c) h I  -Al[S - + B + C+ .. ]

Here a, Bf and Cf are constants with values

2.660, Bf -0.236, Cf = 0.0737

obtained by integrating the f1 equation (4.17) numerically. The

remaining constants appearing above are given by

Af = -(2Y-1) (Y-1) 2 /(2y3 ), Ag = (Y+I)Af/(Y-1),

Ah - 2AfY/(Y-1) 2 , Bg = A/I(Y-1) + (Y+1)B.F(Y-1),

(4.22) Bh = 2Bfy/Y-1) 2
- Y(3Y-1)Af/C1Y-1)

Cg (2Y+1)Cf/(2Y-2), Ch -3yC+/(Y-1),

Dg =-3Cfy
3 /(y-1) 2

.

The range of validity of the expansions (4.20) can now be determined.

For example, substitution of (4.21a) into (4.20a) suggests that the

latter becomes nonuniform when

r\s(2Y-1)/Y 0(1), i.e., s = 0(r-U),

where

(4.23) = (Y-1)/(2Y-1)

% %.



and the definition (4.14) of A has been invoked. Correspondingly,

x =O(rY1(2Y-1)) 
% oP)..

The smallness of x indicates that although one has reached the edge

of L1, the outer region is still too far. The need for an exterior

sublayer is therefore apparent.

4.1.2 The Exterior Bublayor LE

In this sublayer the appropriate variables are and r, with f Z."

defined by

(4.24) r"s xrY(Y1

The expressions (4.8) for T1 , p1 and ul hold again, provided f, g

and h are now treated as functions of f and r. The structure

equations, obtained from (4.9) by transforming from s to ~,are

(4.25a) (1-11) 9f~ f Y1 h ef -1

(4.25b) (-)(-g)-r(fr-gr) -riu hi 0, --

(4.25c) (1-Wfh - rh r + (1/Y)rU qf 0.

Matching requirements imposed by LI, obtained by substituting

(4.21) into (4.20) and then employing (4.24), are

(4.26a) f -Al f(2YI)/Y + OU72m Rnt),

(4.26b) g -~-Alac + O2-1 'r

..........
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(4.26c) h -Ala( r" ft¥-l)¥[Ahh-u Inr + Inf) + Bh ]

+ O(r 2 m), as q + 0.

Guided by these the LE-solution is sought in the form

(4.27a) f . Fo(f) + .

(4.27b) g ' G O ( f ) +

(4.27c) h r. rU([nr Ho(f) + HI(f)] + ... -,.

S.

Substitution into (4.25) leads to the differential equations

(1-u) F O ' = exp(F O )-1,

FO ' -
6O = O,

- MO= 0,

(1-u,) fH I - Hi = H 0 - (I/¥)GO',

whose solutions, subject to the matching requirements (4.26), are

(4.28a) Fo(o) - = - In1l+AlOf (2 Y- 1 ) I ¥ 1 ,

(4.28b) Ho(f) =

(4.28c) HI(M) = AIO( 0(¥ 1 )/[({(2Y-1)/Y 2)(fn + Fo()} - Bh].

Thus the LE-solution can be written as ..

(4.29a) Ti -. n(Yr) + FO(M) +

(4.29b) P1 I -fn(Blr) + FO(9) +

(4.29c) u I  r" [in Ho(f) + Hl(V)] + .

-- ft

U. , ' ",E, '. ... " L,.,' . '," .. , . "_.'","". ".V , .,"- , ". -.-- ,,-; ''''.-'"'"
" "

'""""""""" """.""." "" " ".'
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One must consider the behavior of this solution for large 9 in

order to assess the spatial extent of the sublayer LE. This can be

done, for example, by substituting the large-9 behavior of (4.28a) V

into (4.29a). The result is the expansion

T 1  -{2Y-l1)}n(r1(2Y-1))- ) 2n(Ala¥y) + ..

as 4 , ,-.,-

which clearly becomes disordered when = O(r-1 2 -1 ).).

Correspondingly, x = 0(1), indicating that the edge of the boundary

layer has now been reached. The next step is to see if the

boundary layer merges smoothly with the region OR. %
",.

4.2 Thu Outer Region OR .Va

In the outer region, where x and r are the proper variables, the

solution can be expanded as

* . a

(4.30) #1 llo(x,te I + r 11 1 (x) + ... , for 1= TI, p and ul9

where the leading terms are the numerically obtained limiting

values at blowup and the higher-order terms can be computed from

(4.2a,b) under the outer limit process. It is a straightforward

matter to establish that a match of (4.30) with the LE-solution

(4.29a-c) requires the following asymptotic behavior of the outer

solution at blowup:

(4.31a) T 1  -C(2Y-1)/Y¥nx - fn(Alay) + .. ,

A. %
- + °

.+ • , • . o - - .- ° . - .. . % ". . - . + +/ - °. -. . ,.+° ,+ - - - +p . ".. - " + - - +. .' / + " . ," ". • - + + +- " ..+ .a.

,. • %,, ,,% ' "'° ,,, ', ,' "' . ''"%I' °-''.," ," - """+ ..' ."", - " ' ' " - ,,- ..',-++ "/ "" . P" P".'" " ", '. ." -" . . 6
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(4.31b) P 1 , -((2Y-1)/Y}nx - in(AIB 1 ) + ...

(4. 31 c) Ul - -Ala( x1¥-I/¥) [((2¥r-I)/¥_2}[t(y-I)/,Y}Pnx ,i'

+ £n(Ala)]+BhI + ... , as x + 0.

A careful examination of the numerical solution does, indeed,

confirm this behavior. The constants A, and BI, the only ones yet

undetermined, can then be found by comparing the above expansions

with the numerical solution. The comparison is made at the "edge"

of the boundary layer, i.e., for (x,r) satisfying r << 1, r ¥ 1 2 Y- 1 )

S << x << 1. It should be emphasized that the structure of the

blowup singularity is influenced by the initial conditions only via

these constants; otherwise, the -. lution has a universal, self-

similar structure.

4.3 Summary

The near-blowup analysis is now complete, and can be summarized.

In the interior sublayer L I the expansions are

(4.32a) T 1 + 9-1[-in(Yr) + rXfl(S) + + +

(4.32b) p I 1 e- n(Blr) + r 9 1 (s) + ... ] +

(4.3c) u . -Icr[hl(s) + .. 3 +-

where fl, gl and hl are defined by (4.17) and (4.19). In the

exterior sublayer, the solution is

(4.33a) T , 1 + 6 1[-1n(r) + FO( + ... +

(4.33b) p , I + -l-fn(Blr) + FO(f) + ] + .,

"It
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(4.33c) u ". Inr HO(M + r" H1 (f) + *.)+ -.

where F0 , H0 and H, are given by (4.28). In the outer region the

expansions take the form

(4.34a) T 1 O-'(TiO(X,te) +00

(4.34b) p 1 + a-I P1 0 (xlte) + 0(r)3 +

(4. 34c) u G-1 [ul0 (x,te) + 0(r)) +

where T1 0 , p1 0 and uj0 are the terminal values of the induction

solution, determined numerically.

The remaining variables p and Y can be computed, upto o(e-1), by

appealing to the first equation of (3.2c) and (3.2d). The results

are

(4.35a) p I + 071Etin (Y/B) + rX (g 1-f 1 ) + 3.. +

(4.35b I ~ + (GJY 1 in(bir) + r) (-)-f 1  + .. J+

in L'

(4.36a) P ., 1 + 0 1 Elin(Y/61 ) + ... 3J +

(4.36b) Y , I + (GljYV-1 t~n(b~r) - Fo(f) + . .. 3 +**

in LE, and %N0

(4.37a) P 1 + 0&1(pi0(x~te)-Ti0(x~te) + G(r)) +

(4.37b) V I. + (e15r1 [((Y-1)/Y~plo(x,te.)-Tio(x,te)

+ b(1-x/a) + 0(r)3 + 
ze

'6.
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in OR. The constant b, appearing in(4.35b) ad(4.36b) isgiven -

by I

(4.38) b, exp(Yb + Y~nY -(Y-i)AnBiJ.

Observe that the BL-solutions (4.32), (4.33), (4.35) and (4.36)

break down when -inr = 0(e), signalling the end of the induction

stage, and the onset of explosion. In contrast the OR-solutions,

(4.34) and (4.37), suffer no disordering and in fact, become .

increasingly accurate as r 40.

J^ P -P
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5. The Type-B Explosion Stage

The nonuniformity just encountered decrees that further

evolution in the boundary layer occur on the new time scale a,

defined by

(5.1) r e

For a = 0(1) the limit e I D corresponds to a time interval of

exponential brevity; its role in the evolution of thermal .

explosions was first recognized and exploited by Kassoy [8]. The

two sublayers comprising the boundary layer must again be examined

in turn. In fact, we shall find that as the boundary layers

continue to shrink, an expanding void, or an intermediate region

(denoted by IR in Figure 5), is created between the sublayer LE and -'.. .k

the outer region OR; this region begs a separate treatment.

5.1 The Interior Sublayer LI

The spatial coordinate in this region remains s, now written as

eap

s x/= e e 6 x,
Ir

thereby expressing explicitly the continuous shrinkage of the

region. In the (s,a) variables eqns. (2.1) transform into

+ sp + 'P-p .0
(5.2a) e - p + sp s + (pu)5 = 0,

(5.2b) P[e - 1 u. + su I + (1/Y)ps + Puu s  0,

,- .-N*°*

',, ., " ." ," .,, ." -" ." ... -. .. , " -" .'+ ." ' . " + " " .' ' " ." .' '.' ,' '.' '. .'. " ", -".'..,.'. .' '.' '. ." '- ., . .'- ". .'. -' " .-" ', .' ', ' . " " " .-,' '.".' '.' % ..'- .' '.' '
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(5. 2c) P09- 1 TO + sTsi J-(Y )/M 1 p0j + Ss 5

+ uEPT5 - (Y-1)/Y),p5J W

(5.2d) P10-1 V + Sy ) + upV5  V %(/~W

(5.2e) p PT,

where

(5.3) W e-1 pYexpE8(1-a-1/T)3.

The boundary condition (2.2) is rewritten as

(5.4) u(O,a) 0.

At -fixed s the solution must match with the induction zone as a +

0. To obtain the necessary conditions one applies the "explosion

limit" a fixed, e + (D to the L1 -solution (4.32), (4.35) and gets

(5.5a) T 1+a - 9-1 fnY) + *.+ 81f 1 (s) + .J

(5.5b) p -J +a - 49-1 InS, + .. + 8t 1 ,(s) +

(5.5c) u S(h (S) + ~1

(5.5d) P -i + e-1 An(Y/81 ) + .. + 8Egi(s)-f 1 (s) +

(5.5e) V .1c/j3)+ (6,3?' 1 nb1 +

6(13Y) CY-1)g(s)-Ytf~s)+ .1,as a 0.

Here,

(5.6) 8 =91 eOOX,

j]
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where A was defined in (4.14) and bi n (4. 38) . These conditions

reveal that spatial variations in the explosion stage appear only

at the (exponentially small) O(S) level, thereby suggesting that

the solution is spatially uniform to all algebraic orders in 0. In

other words, the structure of the interior sublayer consists of an

extremely weak chemico-acoustic field superimposed over a uniformly

exploding atmosphere. Accordingly one seeks expansions of the form

(5.7a) u 6, u(s,ca) + *. -~

(5.7b) i io(aze) + & il(s,a) + *.,for I =T, p, P, and Y,

with the understanding that the f1-0 contain all terms of algebraic -

orders. Substitution into (5.2) finds the 10- satisfying the

standard equations of constant-volume thermal explosion (83, i.e.,

(5. Ea) ap 0 /3ci 0, p0  T

(5.8b) (IYp 0 3T0 /3a -IAp 0 3Y 0 /3a WO p0 Y~exp~e(1-a-1/T0 )1.

The solution, subject to the matching conditions (5.5), is

(5.9a) io 4oo + e 1 *1 + for f T, p, Y and P

where

(5.9b) Too = Po0o (1-a)V1, V0 0  (1+Y13-T0 0 )/(YJ3), Po 0  1,

(.) T0 1 = -(1-a) iI[Y(1- Lv) Y0 0 1, P 0 1 = nYB)

(5.9d) Poi = T0 1 +PO 1 /(1-ar), 13YYOI = En(b1/Y)-T 0 1 .

% % %.
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The structure functions I~satisfy, to leading order, the equations

(5.10~a) (sa/as-AMP 1 + P0 3u1 /as 0,

(5.10b) P0 (sa/as-XMu1 + (1/Y) ap1 /as =0,

(5.10c) (s3/3s-M\) poT1 -( (Y-1)/1Y),p1 I T 1W10 /T0
2  

i..

(5.10d) p0 (sa/3Ds-A)Y 1 = IOQT 2)

(5.10e) p, - p0 Tj - Top, 0,

where Wowas defined in (5.8b). Replacement of To and W0 by their

leading-order values from (5.9), followed by the use of the trans-

formations

(5.11) ul (1-a) 1/2 Is~ s(1-a) -1/2,.".Y

reduces the set (5.10) to

(5.12a) (s3/3s-AT 1 + (Y-1)3u,/s = i

(5.12b) (s3/3s-X(T 1 -p1 ) - ua -0

(5.12c) (sa/as-Mu 1 + (1/Y)3p 1 /as =0,

(5.12d) P1 =(lT)To

(5.12e) (s3/as-?dy 1 + C1/(JIY)3T 1  0.

Eqns. (5.12a-c) are identical to (4. lba-c) if T1 , pl, u, and £in

the former are identified, respectively, with fl, gj, h, and s in -V*

the latter. Following the arguments of section 4.1.1, therefore, S.

one is led to the solution
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(5. 13a) T1 = C A (c)/A1Jf 1 (s),

(5.13b) p1 = [A (cr)/A 1 Jg1 (s)

(5.13c) ui = (1-00)1/ 2  1/2C

where Al is the constant introduced earlier in (4.18). The

amplitude function A1 (a) is unknown at this stage, and will be__

determined by matching with the exterior sublayer. So far we only

know its initial value as a result of matching with the induction \

solution (4.32), i.e.,

(5.14) A (0) =A.

It is now a simple matter to solve (5.12d) for 01, and compute Y, by

integrating (5.12e) subject to the regularity requirement. The

resulting expressions are

(5. 15a) P1 = (1-a) LA1 (a) /A 1J1g1 s) f s),

(5.15b) V1 = EA 1 (a)/(1A 1 ))E((Y-1)/Y)g1 (s)-f1 (s)].

Both the spatially uniform and the spatially-varying components

of the expansions (5.7) are thus determined at leading orders,

although the latter involve A1 (a) which is still to be found. It

is worth noting that the spatial structure of the solution is *-

essentially the same as it was at induction-stage blowupi the

scalings (5.11) simply reflect the temporal evolution of the

acoustic speed.

As in section 4.1.1, the Li-solution breaks down for large s,
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the nonuniformity now occuring (see the expansion (4.21)) at 4..

66(Y-1)/- 0(1). One is then led to the exterior sublayer.

5.2 The Exterior Sublayer LE

Here the proper variables are f and a where f is now related to x

and s via the expressions
°-V°

(5.16) V = x eaY/(2Y- 1 ) = (1-)-1/2 ^ e - m.

and a was defined in (4.23). In the new variables the full equations .

(2.1) read

(51a -1 ~gP

5.17a) -1 Pa+ (1-g)Vpv + e U(p) =O,
P.

(5.17b) Pe> t [O-  u o + (1-)guCI + (l/Y)pg + puug = 0,

(5.17c) po - 1 . To + (l-m)fTeJ - 1-1) -1 pa + (1-g)Jpf]

+ e - eaT u u[pTV - ((Y-I)/¥}pj] W,

(5.17d) p 1 - 1 Y + (1-,U)fY I + e-G-a uPY -(/BW,

(5.17e) p PT,

where W retains the definition (5.3). The solution is subject to

the following matching conditions imposed by LI:

(5.18a) T 0 TO + 09 [ToI - PC +
-01

(5.18b) p . To o + &- [-1 0 1 + -01/(1_a) _ pC(2Y-1)IY] +
-P.,

(5.18c) u - -e -  p(Y--I)/¥ Ah la +

[ [Ah n{(l-) e) + Bh]] +

(5.18d) p 1 + 0-1 p0 1 +

W.-

..-

- V.
*1V~ %-%



-30-

(5. 18.) V V0 0 + (6 ) i (~lb I/1) To +

PC(Y1)Y + .. ,as + -* .

Here,

(5. 19a) P(ai) = oA1 (c) (1-0)(Y1)(Y

wi th

(5. 19b) P (0) = cA 1,"

from (5.14). In obtaining the conditions (5.16) we have employed

the expansions (4.21) and the solution (5.13); the variables with

double subscripts are the spatially homogeneous functions appearing

in (5.9). It turns out that compliance with these conditions also

ensures temporal matching with the induction stage. The LE-

solution is now sought in the form

(5.20a) T -. Too 1

(5.20b) p T0  + e1 p1 (qa) +

(5.20c) U -' e ~ EUO(f,a) + e u1 (fla) +

(5.20d) Y + YOO y~~ +

(5.20e) p I' + 91e- 1 -

Substitution into (5.17) shows that (5.17a) is satisfied

identically to 0(8 1 At 0(1), (5.17b) reduces to

7

X-



(l5)~u/39 - = 0

whose solution subject to the matching requirement (5. 18c) is

(5.21) UO= f(YI)/Y2)CPYlI)/Y.

At O9) (5.17e) yields

(5.22) p T I= +)

PI I 1 -10

while (5.17c) reduces to

+

+ C1-M)tapi/af] = V0  expE (1-c) 2 T 1 ,

and, in view of (5.22), simplifies further to

(5.23) (1-)- 2 + (1-u)f3T1 /3f JY'OO exp[(1-cr) T1 1.

Its solution, consistent with the matching condition (5.18a), is

(524 (1-a)-2  2 (2Y-)/Y1.

(524 T in mnI + (- a)P P9

With TI known, (5.22) defines pl. In order to determine V1

consider (5.17d) at 0(0 ) it yields "

I o) + (1-I) ay1 / af
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= (-1/19)Y 0 0 exp[(1-o) 2T 1
] .  :%

.v
When linearly combined with (5.23) the above equation leads to

3[T1 + 3Y1 ] / 9= 0. A

The matching condition (5.18e) then provides the following expression

for YI: *"

1:-.5.

(5.25) RYV= -n(b1 Y) T

It now remains to determine Ul, and the function P(') (or,

equivalently, AI(a)). Both are obtainable from (5.17b) which, at

0( - 1), reads

(5.26) (l-Wf)ul/3 - Mu I  -auo/3o - (I/Y)3pl/ .

I ~.....

With uo and p, known (see (5.21), (5.22) and (5.24)), the...-

general solution of the above equation can be written as

(5.27) U 1 = ((2Y-l)/Y)A(-l/r[K - (l-1)/r 2 1(aP)'In,

+ (p / Y ) f n [ f (2 ¥- 1) / r / {1 + P ( l- C)) 2 (2 ¥- 1) / ¥ ],I-Y'2

where K(a) is the integration 'constant". As 9 0, u 1 has the

asymptotic behavior J-

(5.28) U 1  C (2Y-1)/Y)f (Y-1) [ (Y-1) Y2) ( P) "

IN , N-%" .,
I

. .- 4-
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+ ((2Y-l)/Y 2 )Pifn + K] +

which must agree with the 0(0-1) term in (5. 18c). Matching the Inf

terms yields the differential equation

(iP(c)J' =P

whose solution, subject to (5.19b), is :.-

(5.29a) P O cA,

or, equivalently,

(.9)-(2Y-1)1/(2Y)
(5.9b) A A (1-a)

*With P determined, matching of the f-independent terms in (5.28)

and (5.18c) yields K:

*(5.30) K =(aA 1 /Y)U(1/2)fn(1-ar) -(Y2/(2Y-1)IBhJ,

where the constant Bh was defined in eqn. (4.22). The LE_

solution at the explosion stage is thus complete.

It is instructive to compare the solutions in the two sublayers.

In each the background field is that of a spatially homogeneous

thermal explosion, but the superimposed spatially-varying field is

quite different, both in amplitude and structure. In LIthe

spatial component is exponentially small in amplitude but has a

% % 0
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chemico-acoustic character; all disturbances to the background

homogeneous field are of the same size. In LE the spatial

variations in T, Y and p are 0(e-), while those in u and P are

exponentially small, i.e., the evolution is essentially due to -.J.

constant-volume chemical amplification of a spatially-non-

uniform field, with gasdynamics playing a very minor role.

As a increases, T and p increase and Y decreases, in both the

sublayers. Eventually, p and T peak when Y0 0 , the leading term

in Y, vanishes. This happens at (see (5.9))

(5.31a) a = 3Y/ (1+1¥),R

and the peak values are

.o

(5.31b) T 1+i¥, p 1+-¥.

At the same time, the 0(9 - 1) term (in T, say; see (5.20a), (5.24)

and (5.9c)) develops a logarithmic singularity, indicating

breakdown of the solution and the end of the explosion stage.

5.3 The Outer Region OR

This region remains essentially stationary, and hence plays no %

role during the explosion stage. For the sake of completeness, we

give below the asymptotic form of the outer solution as x -* 0:

these expressions are determined by combining (4.31) and (4.34):

(5. 72a) T 1 + e - 1 [-{(2- 1/,Ynx - in(A, ar)] +

.'. - .4.

" -- - -

" . . " % "~ . . . - . . - . '.. . ' ¢ '/ .. e~ ,/ ,' . . , . , . - . - J. . - . . . V ".i=,, " , ' " " " % . . .- " - *' ' " " " - " - ~ " " 
"°
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(5.32b) p j I + 491 [-{2,-1)/¥}anx - tn(AIxB1 )] + ..

(5.32c) u - ( - 1 AItXx('-1-/'((2,-1)/,2}[ ,

- Ln(Al0() - Bh]+

Similar expressions can be written for p and Y. The important 16 0

point to note is that this solution is unmatchable with that in LE;-

for example, to leading order, T is 1 in OR and 1/(I-a) in LE. The

reason is the emergence of the intermediate region IR in Figure 5,

created by the receding boundary layer. In this region T must

vary, at leading order, from the outer value 1 to the inner value

5.4 The Intermediate Region IR

This region, because of its passive character, will only be

described very briefly. It is governed by the variables a and X,

where X is defined by

(5.33) x= e - x .

Matching with the neighboring regions is carried out at fixed a, by

setting

X -e- I nx

as one approaches the outer region, and

X a(1-u) - -  n ,
.% -,,

0I
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as the boundary layer is approached. Therefore the range of X is

(5.34) 0 < X < a(1-u);

recall that a was defined in (4.23). From (5.20) one can easily

conclude that leading-order matching with LE requires

(5.35a) T 1/1-() + ... , as X + Or(1-u),

with analogous expressions for p and Y, while .-.- *

(5.35b) p 1, u e C(Y-1)/Y 2 A1. -.

Therefore the solution is sought in the form

(5.36a) t o + ... , for I T, p, P and Y,

and

(5.36b) u e - X( -1 )/Y u 0 +

In the (X,a) variables the full equations (2.1) read

Pa - (uP)X eO(-X) 0,

- uuX e-X-(-X) - 0,

P[T O. - uTx e - ( -x)] - (¥-1)/Y}[p 0 - uPX e - e( - x )] W,

O[Yo - UYx e-o(-X)] =(1/3)W,

,** ,*

i::: "
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p =PT,

where W retains the definition (5.3). Clearly, the solution is

stationary, i.e., independent of a to all algebraic orders.

Specifically, the reaction term W is exponentially small since one

expects T < 1/(1-a). The leading-order terms can then be

determined simply by appealing to the matching conditions (5.35),

and one finds that

(5.37a) T0 - /EI- (I-") 1 X3'P.

with analogous expressions for p and Y1, while

(5.37b) p0 -, 
0  2 1u)X

* It is a simple matter to check that the above solution also matches

* with the outer expansions (5.32) as X -*0.

The analysis of the Type-B explosion is thus complete.

6. The Type-! Explosion

In this section details are largely omitted and emphasis is on

the results, since the treatment follows closely the Type-B

* analysis just concluded.

6.1 The Induction Stage

Figures 7(a-d) display the numerical solution of the induction

problem. The graphs are self-explanatory. Similarity with Figures



-1 E --

2(a-d) is obvious, but two points of contrast are noteworthy.

First, the temperature profile now has a rounded peak. Second, the

boundary layer is thicker; this can be seen more clearly in Figure 8),

where T (x,t)/T1 (O,t) is plotted at the last successful time step

for each of the two cases.

The boundary layer retains the form (4.8) and a two-sublayer

structure emerges once again. The expansions are

(6.1a) T 1I+ e-'[-Inoi -r rIn r ((Y-1)/Y)A1 +

2

(6.1b) p i' + e 1 -nBr)-tn (Y)/A 1 +

(6.lc)" r -AIs 2 + C(Y+1)I(Y-1))A2 + A1 /Y] + .,]+ -.

(6.1c) u 0-1[ritnr (-2A~s/Y)

r i2A2/(Y-1) -A 1 /Yls + * J+

in LI, and

(6.2a) T 1 + 9&1 [-Sn(Yr) - n(1+A1 
2 ) + .. ]+

(6.2b) p -.. 1 + e-1 [-.In(Bjr) - An(1+A1C
2 ) + ... ] +

-j~rl/2 + 1/22
(6.2c) u e 1 rinr (-(2/Y-)A 1 CI + C-(2/Y)A1 C In(1+A1 (C-

+ (2A 2 /(Y-1) - A /Y)CJ + ..

in LE' The coefficients A1 , A2- and B, are to be determined by

matching with the outer solution as before. The spatial coordinate

C in LE is defined by

(6.3) =x/r 1/2 6

A-MA J
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implying that the boundary layer is now 0(r 1 /2 ) thick, and hence

thicker than the 0(YI / (2 ¥ - 1 )) Type-B layer. The finding of Figure

8 is thus confirmed.

It turns out further that the LE-solution is uniformly valid all .

the way to 4 = 0, so that the interior sublayer is, in fact, 2
superf l uous.

For smooth merging with the boundary layer the outer,

numerically computed solution is required to have the asymptotic

form

(6.4a) T 1 + e- -21nx - 2n(YA1 ) + ... +

(6.4b) p 1 + e- C-2nx - In(AIB1 ) + ... ] +

(6.4c) u e 1 [-4(A 1 /Y)xtnx + {-2(A1/¥)InA 1

+ 2A 2 /(Y-1) - A /Yx + .. + ... , as x 0.

This behavior was confirmed, and the constants A 1 , A 2 and B 1

computed, by comparing the numerical solution with the above

expansions. The remaining variables p, and Y1 can be determined

as before, by appealing to the first member of (3.2c), and

(3.2d).

6.2 The Explosion Stage

The analysis proceeds as in section 5.2. The appropriate

coordinates are a and C, and the requirement of matching with L

is replaced by the condition of regularity at 0 = . The solution

turns out to be . ,

W 
-
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(6..5a) T Too -' [TOj-(1-a-~ 2 n1+A1C
2I] +

(6.b) p 0 0 + e 1 [TOj-(1-cOr 2 fn(I+AJC )+P 0 1 /(1-a)] + ..

(6.5c) U -ei,/2 [z~lcac/yd-)) + .

(6.5d) +e-

(6.5e) Y YOO (683)' [.nb/Y-O

+(1-Uy) 2 fnf1+A(C2 )] +

where the constant b, appearing in (6.5e) was defined in (4.38).

The doubly subscripted quantities correspond to the spatially

homogeneous explosion, and were introduced in (5.9). The explosion

stage peaks just as it did for Type-R, and the remarks at the end

of section 5.2 remain valid. Finally, the IR-analysis of section

5.4 carries over, with obvious modifications.

-

P:.
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7. Concluding Remarks

The spatial structure and temporal evolution of a localized

thermal explosion in a confined gas have been described

mathematically. Localization, rather than a spatially uniform

explosion, occurs as a result of system nonhomogeneities, here

modelled by a slightly nonuniform initial temperature. Attention

is confined to what may be called the fast-reaction limit,

characterized by the initial induction time of the reaction being

comparable to the initial acoustic time across the vessel, so that

diffusion plays no role. This limit can be achieved if the initial

temperature of the unreacted gas has been raised to a sufficiently

high level, perhaps by the passage of a strong shock. By contrast,

the slow-reaction limit would correspond to the induction time and

the conduction time being of the same order. The latter problem

was the subject of Poland and Kassoy's investigation (6].

The explosion is shown to develop in two distinct stages. The
Sd..

first stage is induction, characterized by small perturbations

about a spatially uniform state, where the primary interaction is

between linearized acoustics and weak but nonlinear chemical

%J1

heating. Chemical amplification leads to localized thermal

runaway, or blowup of the perturbations, at a time and location

determined by the initial and boundary conditions. The spatial

structure at blowup is self-similar, differing slightly depending -5
upon whether the runaway site is at the boundary or in the interior

of the domain.

Induction is followed by explosiun, characterized by 0(1)

.%%%.

• .. *d.,... ..
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variations in the state of the gas. The characteristic chemical 4.

time plunges dramatically. The acoustic time drops as well, but

not nearly in the same proportion, so that explosion is dominated

by chemical heating. There is no time for expansion, with the

result that changes in the velocity and density fields are

negligible. Thus the gas explodes locally at essentially constant-

volume conditions, with little change in the spatial structure that -.

it inherited at runaway. (Analysis in the Appendix shows that if

thermal expansion is admitted, the corresponding spatial structure .. '.

is necessarily singular.) The explosion stage ends when temperature

and pressure within the explosion have peaked, the final values

being exactly the same, to leading order, as in the spatially

homogeneous case. The subsequent expansion of the hot, highly .=..

compressed gas, and the eventual development of a blast wave, are .. 4.

currently under study.
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Appendix

The setup (4.8), employed in the text for analyzing the spatial

structure of blowup, is based on the numerical observation that

both T1 and p1 exhibit identical, -Inv behavior as r + 0.

This observation, found to hold for all the numerical runs

undertaken, implies that blowup is a constant-volume process, since

density perturbation Pl = p1 - T, remains bounded.

Let us now consider the possibility that for some initial

conditions, blowup lies partway between a constant-volume and a

constant-pressure process, and ask whether a self-similar structure

consistent with this notion exists. Accordingly, we replace (4.8)

by

(A.la) Ti , -Inv + fO(s) + .. ,

(A.1b) P1  -Ainr + gO(s) +

(A.lc) u I  ho(s) + ... ,

where

0 < A < 1.

The case A - 0 corresponds to a constant-pressure situation, and
.'

A - I to the constant-volume case already discussed. Substitution A_

into (4.7), followed by some rearrangement, yields the leading-

order structure equations

WA

am

-, -. ..,. .. , . , . .- ... ... ..-, . . , . . . .. . , . . . .. . .. . .. ,: ,
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(A. 2a) U(-2f'+1-s (-(Y-1)/Y)AJ (l-Ys2 )exp fog

(A.2b) (l-s 2 )g0 ' sEA-Yexp fol,

(A.2c) Y(1-s 2 )h 0 ' Yexp f0  A.

The transformation

(A.3) f0  -InF

reduces (A.2a) to the linear equation%

(A.4) s(1-s2 )F' - (-s 2 -{_ 1/}J =1Y
2 .%

f (Y-)IY)AF I-Y

Once F is known, f0 , go and ho can be Computed sequentially from

(A.3) and (A.2b,c).

Equation (A.4) has singular points at s = 0 and 1. It can be

shown that in general integration can remove at most one

singularity, thereby yielding solutions which are singular

either at 0 or at 1. Such solutions can evolve only from very -'-

special, singular initial conditions, and are therefore

unacceptable if the initial data are smooth. The only regular

solution is the constant 5 5

F = Y

which requires

A =1,

corresponding to the constant-volume blowup already discussed. .
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(d) p1. The profiles are plotted at (i) t=O, (ii) t=0.2, -... ''
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A schematic of the spatial zones at and beyond blowup.

BL: Boundary Layer, LI: Interior S~blayer, LE: Exterior Sublayer,

OR: Outer Region, IR: Intermediate Region. Not to scale (The t- -

scale is cosiderably stretched).
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Experimental observations of ignition in premixed gaseous

reactants indicate that perfectly homogeneous initiation is

practically unrealizable. Instead, combustion first sets in, as a

rule, at small, discrete sites where inherent inhomogeneities cause

chemical activity to proceed preferentially and lead to localized

ex~plosions. Combustion waves propagating away from these "hot

spots" or "reaction centers" eventually envelope the remaining

bull V.

This study examines the spatial structure and temporal evolution

of a hot spot for a model involving Arrhenius kinetics. The hot

spot, characterized by peaks in pressure and temperature with

little diminution in local density, is shown to have one of two

possible self-similar structures. The analysis employs a

combination of asymptotics and numerics, and terminates whenN

pressure and temperature in the explosion have peaked. @
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